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Abstract

In this paper, we will present a unified numerical technique for the order verification of the error in numerical
methods. Four examples are presented to illustrate the approach which include the order verification of the er-
rors in Taylor polynomial approximation, the 5-point forward numerical differentiation formula, the composite
Simpson method, and the 4-stage explicit Runge-Kutta method. The approach is very convenient for teaching
the order of various numerical methods at the undergraduate level and is suitable for utilizing technology as a
tool.
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1 Introduction
Taylor polynomial approximation and numerical methods are core topics in the undergraduate Math-
ematics curriculum. Verifying the order of the approximation’s error of such problems plays a central
role in the teaching of such methods.

Recently, the order verification of solutions to differential equations has been investigated in a number
of papers. Khuri and Xie [5] used a numerical method to verify the order of the asymptotic expansion
of Duffing’s equation. Deeba and Xie [4] utilized an analogous technique for the verification of order
of the asymptotic expansion of Van der Pol’s equation. Khuri [6] examined the numerical order veri-
fication of the asymptotic expansion of a nonlinear differential equation arising in general relativity.

In this paper, a unified numerical technique will be discussed for finding and verifying the order of
accuracy of a given numerical method. The technique that we will introduce is general and unified
and thus enjoys wide applicability in numerical methods. The unified technique can be implemented
as long as the exact, asymptotic [7], perturbation [1, 2, 8], and/or the numerical solution [3] is also
available.

The unified order verification approach is first introduced and then tested on a number of numerical
methods. The examples discussed, include the order verification of the following numerical methods:

1. Taylor Polynomial Approximation
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We will consider the Taylor polynomial Pn(x) of degree n that approximates a given function f(x) at
x = x0 + h.

f(x) ≈ Pn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k (1.1)

2. Numerical Differentiation

We will consider the following 5-point forward formula that estimates the first derivative of a given
function f(x) at the point x = x0.

f ′(x0) ≈ 1

12h
[−25f(x0) + 48f(x0 + h)− 36f(x0 + 2h) +

16f(x0 + 3h)− 3f(x0 + 4h)]
(1.2)

3. Numerical Integration

In a third example, we will discuss the order of the error in the composite Simpson method which
approximates the definite integral from x = a to x = b of a given function f(x). It is given by the
formula:

∫ b

a

f(x) dx ≈ h

3


f(x0) + 4

N/2∑
n=1

f(x2n−1) + 2

N/2 −1∑
n=1

f(x2n) + f(xN)


 (1.3)

where xi = a + ih for i = 0, 1, 2, ...N and h =
b− a

N
.

4. Numerical solution of the initial-value problem:

y′ = f(x, y), y(x0) = y0

Finally, we will verify the order of the error in the most common 4-stage explicit Runge-Kutta method
given by:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) (1.4)

k1 = f(xn, yn) k2 = f

(
xn +

h

2
, yn +

1

2
hk1

)

k3 = f

(
xn +

h

2
, yn +

1

2
hk2

)
k4 = f (xn + h, yn + hk3)

(1.5)

to approximate the solution y(x) of the initial-value problem at x0 + h, the end of one step of length
h.

Verifying the order of the errors in numerical methods, particularly Taylor polynomial approximation,
is usually difficult for students to understand and thus does not receive much focus or interest in the
undergraduate curriculum. In this paper we present a unified simple approach for verifying the order
which is very convenient for students to apply and comprehend. Most of the symbolic and numerical
computations have been performed using the computer algebra system - Maple. In fact, any software
which keeps track of enough significant digits can be utilized.
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The balance of this paper is organized as follows. In Section 2, the unified numerical technique
for the order verification of the error in Taylor polynomial approximation and other more general
numerical methods is described. In section 3 the technique is implemented for several numerical
examples. In section 4 we give an error analysis and the Maple code for the order verification of
Taylor approximation. In section 5 we give a conclusion that briefly summarizes the paper’s content.

2 Order Verification Approach
In this section, the unified verification of order approach is described. We assume that the numerical,
perturbation, asymptotic expansion, or analytical solution exists for a given problem.

First, we will introduce the method and implement it to verify the order of the error in Taylor’s
polynomial approximation. Then, in the second subsection, we will show how the method can be
applied for other numerical methods.

2.1 Order verification for Taylor polynomial approximation
Let f be a function such that f and its first n derivatives are continuous on the closed interval I and
let f (n+1)(x) exist on the interior of I . Then for x0 and x in I we have

f(x) = Pn(x) + Rn(x)

where Pn(x) is the nth degree Taylor Polynomial centered at x0 given by

Pn(x) = f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)

2 + ... +
f (n)(x0)

n!
(x− x0)

n (2.6)

and Rn is a remainder term that depends on x, denoting the difference between the Taylor polynomial
of degree n and the original function f(x).

If both x0 and x = x0 + h lie in I , then we have the following Taylor expansion about x0:

f(x0 + h) =
n∑

k=0

f (k)(x0)

k!
hk + Rn(h) (2.7)

The remainder term Rn(h) can be estimated by Mhn+1 for sufficiently small h, as expressed in the
relationship:

Rn(h) =
f (n+1)(x∗0)
(n + 1)!

hn+1 ≈ Mhn+1, x0 ≤ x∗0 ≤ x0 + h

for sufficiently small h. Hence the remainder Rn(h) will be replaced by En(h) = Mhn+1, where M
is a constant.

To verify the order of the error in Taylor’s polynomial approximation about x0 we proceed as follows:

f(x0 + h) = Pn(x0 + h) + Khn+1 (2.8)
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or equivalently
|En(h)| = |f(x0 + h)− Pn(x0 + h)| = |K||h|n+1 (2.9)

Taking the logarithm for both sides yields

log |En(h)| = log |K|+ (n + 1) log |h| (2.10)

Next, we graph log |En(h)| versus log |h| for several different values of h. These points should ap-
proximately lie on a straight line. Using linear least-square approximation we can determine the best
fitted line y = ax+ b for the points {(log |h|, log |En(h)|)}. We can then obtain the order of the error
in the approximation which is the slope of the line, that is, a = n + 1. It is worth pointing out that the
y-intercept equals b = log K, where K is the absolute value of the error constant.

2.2 Order verification for general numerical method
For a more general numerical method, let A(h) denote an approximation obtained by using a specified
numerical method with a specified step size h. If T (h) is the corresponding true value of the given
step size h, then the error E(h) ≡ |A(h)− T (h)| can be estimated by

E(h) = K|h|M , (2.11)

where M is the order of the error in the numerical method and K is the absolute value of the error
constant. To find the order M we follow the same scheme used for polynomial approximation by
taking the logarithm of both sides of equation (2.11). We obtain

log [E(h)] = log K + M log |h| (2.12)

We note from equation (2.12) that the value of log E(h) as a function of log |h| is linear with slope M
and y-intercept equals to log K. Thus, in order to verify the order of the error in the numerical method,
we graph log E(h) versus log |h| for several different values of |h|; the points {(log |h|, log |E(h)|)}
should approximately lie on a straight line. Using linear least-square approximation, we obtain the
best fitted line y = ax + b for these points. Then, we obtain the order of the error which is the slope
of the line, namely, M = a. Note that the absolute value of the error constant is equal to K = eb.

3 Examples
In this section, we will give four examples to illustrate the technique described in the previous section.
In the first example, the order verification of the error in Taylor polynomial is verified by considering
three different cases of polynomial approximations: two Maclaurin polynomials and one Taylor about
x0 = 1. In the last three examples, the order of the errors are verified for numerical methods in
differentiation, integration, and solution of initial-value problems, respectively. The order of the error
of each method is verified by manipulating the unified technique described in the previous section.

Example 1. (Order verification of Taylor polynomial)
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(i) Consider the Taylor polynomial:

A(h) = h− 1

6
h3 +

1

120
h5 (3.13)

that approximates the function f(x) = sin x near the point x0 = 0.

In order to verify the order of the Taylor polynomial given in (3.13), let T (h) = f(h) = sin h and
then we use 15 significant digits to calculate the set of points {(log(hi), log |E(hi)|)}10

i=1, where

hi = 0.02i for i = 1, 2, 3, ..., 10.

Figure 1. shows a graph of these points and the best fitted line for the specified points is determined
to be

y = −8.5262206593 + 6.9996607358 x (3.14)

We conclude from the equation (3.14) of the best fitted line that the order M of the error in the Taylor
polynomial is equal to the slope of the line, that is, M = 7. Further the error constant is given by

K = e−8.5262206593 ≈ 1.982× 10−4

which agrees with the actual error constant
f (7)(x∗0)

7!
≈ 1

7!
= 1.984× 10−4.

Figure 1. Fitted line for order verification of Taylor polynomial (3.13).

(ii) Consider the Taylor polynomial:

A(h) = h2 − 1

6
h6 +

1

120
h10 − 1

5040
h14 (3.15)

that approximates the function f(x) = sin (x2) near the point x0 = 0.
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Let T (h) = sin (h2), then following the same steps as in part (i) and using 35 significant digits yields
the following best fitted line:

y = −12.8018644234 + 17.9999861866 x (3.16)

From the equation (3.16), we conclude that the order M of the error in the Taylor polynomial is equal
to approximately M = 18. The error constant is given by

K = e−12.8018644234 ≈ 2.7556× 10−6,

which agrees with the actual error constant
f (18)(x∗0)

18!
≈ 1

362880
= 2.7557× 10−6. For the choice of

hi = 0.02i, i = 1, 2, ..., 10 and 15 significant digits, Maple fails to obtain the best fitted line. The
effect of the choice of stepsize h and the number of significant digits will be discussed in Section 4.

(iii) Consider the Taylor polynomial:

A(h) = e

[
1 +

1

2
h +

1

48
h3 − 5

384
h4

]
(3.17)

that approximates the function f(x) = e
√

x near the point x0 = 1.

Let T (h) = f(x0 + h) = f(1 + h) = e
√

1+h. Following the same steps as in part (i) using 15 signifi-
cant digits, the best fitted line for the specified points will be

y = −3.9319940563 + 4.9224946719 x (3.18)

Hence we conclude that the order of the error in the Taylor polynomial (3.17) is approximately M =
5. The error constant is

K = e−3.9319940563 ≈ 1.96045× 10−2.

Example 2. (Order verification of a numerical differentiation formula)

Consider the 5-point forward differentiation formula:

A(h) =
1

12h
[−25f(x0) + 48f(x0 + h)− 36f(x0 + 2h)+

16f(x0 + 3h)− 3f(x0 + 4h)]

(3.19)

that approximates f ′(x) at the point x0 = 1, where f(x) = ex. To verify the order of the error in the
formula (3.19), let T (h) = f ′(h) = eh and we use 15 significant digits to calculate the set of points
{(log(hi), log |E(hi)|)}10

i=1, where

hi = 0.01 i for i = 1, 2, 3, ..., 10.

Figure 2. shows the plot of the points {(log(hi), log |E(hi)|)}10
i=1 and the best fitted line for these

points which is
y = −0.2265056964 + 4.0951612247 x (3.20)
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From the equation (3.20) representing the best fitted line, we observe that the order of the error in the
5-point forward differentiation formula is given by the slope of the line. More specifically, the order
of the error is M = 4 and the error constant

K = e−0.2265056964 ≈ 0.79732.

Figure 2. Fitted line for order verification of the 5-point numerical differentiation.

Example 3. (Order verification of a numerical integration formula)

Consider the composite Simpson’s formula:

A(h) =
h

3


f(x0) + 4

N/2∑
n=1

f(x2n−1) + 2

N/2−1∑
n=1

f(x2n) + f(xN)


 (3.21)

that approximates the integral T (h) =

∫ 1

0

f(x) dx where

f(x) = ex2

, xi = ih, i = 0, 1, 2, ..., N and h =
1

N
.

The order of the error in the formula (3.21) can be determined by using 15 significant digits to calcu-
late the set of points {(log(hi), log |E(hi)|)}10

i=1, where

hi =
1

8 + 2i
for i = 1, 2, 3, ..., 10

and
E(h) = |A(h)− T (h)| .
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Figure 3. Fitted line for order verification of the composite Simpson’s rule.

The best fitted line for the set of points, which is shown in Figure 3, is given by:

y = −1.2439014509 + 3.9863619506 x (3.22)

Clearly, the best fitted line equation (3.22) shows that the error in the composite Simpson’s rule is of
order M = 4 and the error constant is

K = 10−1.2439014509 ≈ 0.288254.

Example 4. (Order verification of a numerical method for solving an initial-value problem)

Consider the 4-stage explicit Runge-Kutta method:

A(h) = y0 +
h

6
(k1 + 2k2 + 2k3 + k4) (3.23)

where

k1 = f(x0, y0), k2 = f

(
x0 +

h

2
, y0 +

1

2
hk1

)
,

k3 = f

(
x0 +

h

2
, y0 +

1

2
hk2

)
, k4 = f (x0 + h, y0 + hk3) ,

(3.24)

that estimates the value T (h) = y(h) = eh of the solution of the initial-value problem

y′ = y, y(0) = 1. (3.25)
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Figure 4. Fitted line for order verification of the 4-stage explicit R-K method.

The order of the error in the formula (3.23) can be confirmed by using 15 significant digits to calculate
the set of points {(log(hi), log |E(hi)|)}10

i=1, where

hi =
1

8 + 2i
for i = 1, 2, 3, ..., 10

and
E(h) = |A(h)− T (h)| .

The best fitted line for the set of points, which is shown in Figure 4, is found to be:

y = −4.7490897218 + 5.0098653465 x (3.26)

From the latter linear equation it is obvious that the 4-stage explicit Runge-Kutta method has local
truncation error E(h) = Kh5. Since the method has order p if its local truncation error has order
p + 1, hence we conclude that the method has order 4. Further, the error constant equals to

K = e−4.7490897218 ≈ 8.6595× 10−3.

4 Error Analysis and Maple code
In this section, example 1(iii) is chosen to explore the unified order verification approach. More
specifically, we will investigate the effect of the number of points and the significant digits on the
accuracy of the estimated orders and error constants. The approach will be applied for different
choices of the number of significant digits, points, and bounds for the stepsize. We have used the
following Maple code for the Taylor approximation A(h) ≈ e

√
x (where n is the number of points

used, a is the step increment, and Digits is the number of significant digits):
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D min h n max h y = log K + Mx
10 0.02 10 0.20 −4.246 + 4.749x
15 0.02 10 0.20 −3.932 + 4.922x
20 0.02 10 0.20 −3.932 + 4.922x
10 0.02 15 0.30 −4.160 + 4.787x
15 0.02 15 0.30 −3.977 + 4.904x
20 0.02 15 0.30 −3.978 + 4.904x
10 0.01 10 0.10 −6.794 + 3.751x
15 0.01 10 0.10 −3.835 + 4.959x
20 0.01 10 0.10 −3.835 + 4.959x
10 0.01 15 0.15 −5.755 + 4.085x
20 0.01 15 0.15 −3.868 + 4.949x

Table 1: Fitted lines for the Taylor polynomial (3.17).

n := 10; min := 0.02; a := 0.02;
Digits := 10;
f := x − > exp(sqrt(x));
x[0] := 1;
Tv := hv − > f(x[0] + hv);

Mv := hv − > e +
e

2
hv +

e

48
h3

v +
5e

384
h4

v;
for k from 1 to n + 1 do
h := min + a ∗ k;
T [k] := Tv(h);
A[k] := evalf(Mv(h));
E[k] := evalf(abs|T [k]− A[k]|);
x[k] := log(h);
y[k] := log(E[k]);
end do

Then, we have applied Maple’s stats[fit, leastsquare] syntax (Version 11), that is found in the stats
library, to find the best fitted line for the sequence of points {(x[i], y[i])}n

i=1. The following table
contains the fitted lines for different values of the number of points n. From Table 1 we observe that
when the number of points is increased, the estimated orders are improved only when the significant
digits are also increased. A similar argument is applied when the stepsize h is decreased. Hence, it
is recommended to use a number of points that gives a reasonable stepsize h (10 to 15 points with
0.01 ≤ h ≤ 0.20 and at least 15 significant digits). On the other hand, using higher significant digits
will keep or improve the accuracy. The actual value for the error order is M = 5 and for the error

constant is K =
f (5)(c)

5!
, where x0 < c < x0 + h. Since x0 = 1 and the average value of h ≈ 0.1, we

may consider −4.106 ≤ log K ≤ −3.670. Similar recommendations also holds for other numerical
methods.
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5 Conclusion
In this paper, we have presented a general approach for the order verification of the errors in Taylor
polynomial approximations as well as other more general numerical methods. The technique was
tested by verifying the error for several familiar numerical methods that normally arise in the under-
graduate curriculum. Four examples were selected and presented to illustrate the approach including
Taylor polynomial approximation, the 5-point forward numerical differentiation formula, the com-
posite Simpson’s rule and the 4-stage explicit Runge-Kutta method. Other numerical methods such
as Newton’s method for solving equations and Gaussian integration can also be considered.

The unified approach was explored using one of the examples to investigate the effect of the number
of points and significant digits on the accuracy of the estimated orders and error constants. Sugges-
tions for the choice of such numbers as well as reasonable stepsize h were given.

Understanding and verifying the error of Taylor approximations as well as numerical methods does
not get much attention by students possibly because it is difficult to apprehend or too complicated.
The approach offers a simple alternative and unified technique that manipulates technology as a tool.
Thus, it is convenient to teach and include this approach in the undergraduate mathematics curricu-
lum.
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